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Unexpected accelerator modes were recently observed experimentally for cold
cesium atoms when driven in the presence of gravity. A detailed theoretical
explanation of this quantum effect is presented here. The theory makes use of
invariance properties of the system, that are similar to the ones of solids, leading
to a separation into independent kicked rotor problems. The analytical solution
makes use of an asymptotic approximation very similar to the semiclassical one,
except that the small parameter is not Planck’s constant, but rather the detuning
from the frequency that is resonant in absence of gravity.
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1. INTRODUCTION

The kicked rotor is a standard system used in the investigation of classical
Hamiltonian chaos and its manifestations in quantum mechanical sys-
tems. (1–4) The motion is classically described by the Standard Map. The size
of the chaotic component in the phase space of this map increases with the
driving strength, and when the latter is sufficiently strong unbounded dif-
fusion in action space takes place. Important deviations are however found
for some values of the driving strength, (3–6) due to the onset of so-called
accelerator modes, that produce linear, rather than diffusive, growth of
momentum along orbits in a set of positive measure. Quantization imposes



remarkable modifications. For typical parameter values, the classical dif-
fusion is quantally suppressed by a mechanism that is similar to Anderson
localization in disordered solids. (1, 2, 7, 8) The accelerator modes decay in time
due to quantum tunneling, but their presence results in an increased
localization length. (9–12) Quantum resonances (that should be distinguished
from classical ones) are found when the natural frequency of the rotor is
commensurate with the frequency of the driving. (13, 14) The quasienergy
states are then extended in angular momentum, leading to ballistic
(i.e., linear) growth of the latter in time.

The quantal suppression of classical diffusive transport first observed
in the quantum kicked rotor is actually a more general phenomenon, now
known as dynamical localization. Theoretical predictions (15, 16) prompted
the first experimental observations of this phenomenon for microwave
driven Hydrogen and Hydrogen like atoms. (17–19)

The most direct experimental realization of the quantum kicked rotor
is achieved in the field of atom optics, by a technique pioneered by Raizen
and coworkers. (20–23) Laser-cooled Atoms (first Sodium and later Cesium)
are driven by application of a standing electromagnetic wave. (24, 25) The
frequency of the wave is detuned from resonance, so a dipole moment is
induced in the atom. This moment couples with the driving field, giving rise
to a net force on the center of mass of the atoms, proportional to the
square of the electric field. (26, 27) As the wave is periodic in space, the atom
is thus subjected to a periodic potential. The wave is turned on and off
periodically in time, and the time it is on is much shorter then the time it is
off. A realization of a periodically kicked particle is then obtained. In real
experiments the duration of the kicks is always finite, setting a bound on
the momentum range wherein the d-kicked model is applicable. At very
large momentum the driving becomes adiabatic, leading to trivial classical
and quantum localization in momentum. (20–23, 28)

The basic difference between the kicked particle and the kicked rotor
is that the momentum of the particle is not discrete as is the angular
momentum of the rotor. As we shall review in Section 2.2 , this difference
is circumvented by Bloch theory. The spatial periodicity of the driving only
allows for transitions between momenta that differ by integer multiples
of (G, with 2pG−1 the spatial period of the driving potential. This implies
conservation of quasi-momentum. The particle wavepacket is a continuous
superposition of states with given quasi-momenta. The dynamics at any
one fixed quasi-momentum is that of a rotor, which however differs from
the standard kicked rotor because of a constant shift in the angular
momentum eigenvalues, proportional to the given quasi-momentum. This
modification of the kicked rotor dynamics is formally the same as that
produced by a Aharonov–Bohm flux threading the rotor. It does not
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crucially affect dynamical localization, (29) so the latter carries over to the
particle dynamics. In experiments (20–23) it is found that for typical values of
the parameters, an initial narrow gaussian distribution around zero
momentum spreads into an exponential distribution, characteristic of
dynamical or Anderson localization.

The difference between the rotor’s and the particle’s dynamics due to
the presence of a continuum of quasi-momenta is indeed crucial in what
concerns quantum resonances at ‘‘commensurate’’ values of the kicking
period, because these only occur at special values of quasi-momentum.
Therefore, nearly all quasi-momenta involved in a particle’s wave packet
would not be in resonance. (30) In this paper we present an exact calculation,
showing that the quadratic spread in momentum grows in this case linearly
in time, in contrast to the situation found for the kicked rotor, where this
spread is quadratic in time. A more detailed analysis of the kicked particle
dynamics at resonance will be presented elsewhere. (31)

In the above discussed experiments, gravity had but negligible effects,
as driving of the atoms took place in the horizontal direction. In recent
experiments, (32–34) that provide the subject of the theoretical analysis of the
present paper, atoms were driven in the vertical direction, and gravity was
found to produce remarkable effects. In the vicinity of the resonant
frequencies of the kicked rotor, a new type of ballistic spread in momentum
was experimentally observed. (32–34) A fraction of the atoms are steadily
accelerated, at a rate which is faster or slower than the gravitational accel-
eration depending on what side of the resonance the driving frequency is.
Such atoms are exempt from the diffusive spread that takes place for the
other atoms, and their acceleration depends on the difference between the
driving and the resonant frequencies.4 In ref. 33 a physical explanation was

4 The main experimental results are clearly presented in Figs. 4 and 13 of ref. 33.

given, and it was stressed that the phenomenon resembles the accelerator
modes in the Standard Map. The accelerating parts of the distributions
were hence termed ‘‘quantum accelerator modes,’’ at once emphasizing that
resemblance, and their purely quantal nature; in fact, they have no classical
counterpart in the classical dynamics of the kicked particles in gravity.5

5 For some parameter values, the latter dynamics does exhibit accelerator modes, which are
however unrelated to the experimentally observed ones since the experiments are not in the
semiclassical regime that is found as the limit (19) is approached.

In this paper we present a theory that explains the experimental results
in terms of the exact quantum equations of motion, and allows for further
predictions. The results of this work are summarized in ref. 35. The main
result is that the quantum accelerator modes in presence of gravity do
indeed correspond to accelerator modes of a classical map. This map is not,
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however, the one given by the proper classical limit (( Q 0). It emerges of a
quasi-classical asymptotics, where the small parameter is not ( but rather
the detuning of the kicking frequency from the resonance of the kicked
rotor. Though a formally simple variant of the Standard Map, it is endowed
with a rich supply of accelerator modes and complex bifurcation patterns.

Our analysis starts from the time-dependent Schrödinger equation for
the kicked particle in the laboratory frame. A simple gauge transform
reduces the corresponding Floquet operator to that of a particle kicked
by a potential, that is quasi-periodic (and not just periodic) in space
(Section 2.1). The corresponding incommensuration parameter adds to the
kicking period, in building a formidable mathematical problem. In particu-
lar, quasi-momentum is not conserved, preventing implementation of the
Bloch theory. Transforming to the ‘‘temporal gauge,’’ where the momen-
tum is measured relative to that of the free falling particles (Section 2.3),
removes this difficulty and restores decomposition into independent rotor
problems, at the price of time-dependent Floquet operators (Section 2.3).
On such operators we work out the mentioned quasi-classical approximation
at small detuning from resonance.

Variants of the kicked-rotor, in which some parameter was allowed to
change with time, have been considered earlier, (36, 37) the issue being what
degree of uncorrelatedness in the time-dependence is sufficient to destroy
localization. For the quasi-periodic dependence of the present model, this
issue is as yet unsolved, and depends on incommensuration properties. In a
mathematical aside of this work, we prove that in the presence of gravity
and at resonant values of the kicking period the particle energy (compared
to free falling particles) grows linearly in time, in sufficiently incommen-
surate cases at least.

2. DISCRETE-TIME QUANTUM DYNAMICS

The dynamics of the atoms that are falling as a result of gravity
and are kicked by the external field is modeled by the time-dependent
Hamiltonian:

Ĥ(t)=
P̂2

2M
− MgX̂+o cos(GX̂) C

+.

t=−.

d(t− tT), (1)

where t is the continuous time variable, the integer variable t counts the
kicks, P̂, X̂ are the momentum and the position operator respectively, M is
the mass of the atom, 2pG−1 is the spatial period of the kicks, o is the kick
strength, and T is the kicking period in time. The positive x-direction is
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that of the gravitational acceleration. Without changing notations, we
rescale momentum P̂ in units of (G, position X̂ in units of G−1, and mass in
units of M. Then the energy E comes in units of (

2G2/M, and time t in
units of M/((G2). The reduced Planck constant is equal to 1, and the
Hamiltonian takes the following form:

Ĥ(t)=
P̂2

2
−

g

y
X̂+k cos(X̂) C

+.

t=−.

d(t− ty), (2)

where:

k=
o

(
, y=

(TG2

M
, g=

MgT
(G

, (3)

In the above defined units, g/y is the gravitational acceleration. The
dynamics is fully characterized by the dimensionless parameters k, y, g.

In the following Dirac notations will be used: e.g., k(x)=Ox | kP and
k(p)=Op | kP will denote the wave function in the position and in the
momentum representation respectively.

2.1. Floquet Operators

The quantum evolution over a sequence of discrete times spaced by
one period of the external periodic driving is obtained by repeated applica-
tion of the Floquet operator. This is the single unitary operator which gives
the evolution from any instant to the next one in the given sequence of
times. Our discrete times will be the kicking times themselves.6 Throughout

6 Other choices lead to different Floquet operators, which are nonetheless unitarily equivalent
to the present one.

the following, time is a discrete variable, given by the kick counter t. As the
state discontinuously changes at the kicking times, we further specify the
state at time t to be the one immediately after the tth kick. The Floquet
operator Û is then found by integrating the Schrödinger equation (with the
Hamiltonian (2)) from t=0+ to t=y+:

Û=K̂F̂=e−ik cos(X̂)F̂, (4)

where K̂ describes the kick, and F̂ describes free fall inbetween kicks. With
the present units, the energy eigenfunctions uE(p)=Op | EP of the particle
in the gravity field read: (38)

uE(p)=1 y

2pg
21/2

e i y

g
(Ep − p3

6 ).
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Therefore, apart from a constant phase factor,

OpŒ| F̂ |pœP=F dE e−iEyuE(pŒ) ug
E(pœ)

=d(pŒ − pœ − g) e−i y

2 (pŒ − g

2)2
.

Moreover,

Op| e−ik cos(X̂) |pŒP= C
.

n=−.

Kn d(p − pŒ − n)

where Kn=(−i)n Jn(k) and Jn(k) are the Bessel functions of the 1st kind.
Replacing in (4) we get the explicit form of the propagator in the labora-
tory frame:

(Ûk)(p)= C
.

n=−.

Kne−i y

2 (p − n − g

2)2
k(p − n − g). (5)

Note that Kn=K−n. A more transparent formulation is gained by intro-
ducing the operators:

R̂=e−iyP̂2/2, Ŝ=e igX̂/2.

One may then write:

Û=ŜK̂R̂Ŝ=Ŝ†ÛŒŜ, ÛŒ=Ŝ2K̂R̂. (6)

Thus Û only differs by a unitary transformation (in fact a gauge transfor-
mation) from ÛŒ, which has the simple form:

ÛŒ=e i(gX̂ − k cos(X̂))e−iyP̂2/2. (7)

Thus formulated, the problem is that of a particle freely moving on a line,
except for time-periodic kicks. The spatial dependence of the kicks is
periodic when g is rational, quasi-periodic otherwise.

2.2. Quasi-Momentum and Kicked Rotors.

If g=0, then (7) is formally similar to the Kicked Rotor model, (1, 2)

from which it however differs in one crucial respect: whereas the latter has
the kicked particle moving on a circle, (7) has the particle moving on a line
instead. A link between the two models is established by the spatial perio-
dicity of the kicking potential. We review this well-known construction,
because it plays a fundamental role in this paper.
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At g=0 the evolution operator Û commutes with spatial translations
by multiples of 2p. As is well known from Bloch theory, this enforces con-
servation of quasi-momentum. In our units, this is given by the fractional
part of momentum, and will be denoted by b. We then introduce a family
of fictitious rotors (particles moving on a circle) parametrized by b ¥ [0, 1),
with angle coordinate h (henceforth named b-rotors), and denote |YbP their
states. For integer n we denote |nP the angular momentum eigenstates of
these rotors so that in the h-representation Oh | nP=(2p)−1/2 exp(inh). To
states |kP of the particle we associate states |YbP of the b-rotors as follows:

Oh | YbP=
1

`2p
C
n
On+b | kP e inh. (8)

In the angular momentum representation,

On | YbP=On+b | kP. (9)

Note that |YbP is not necessarily normalized to 1, even if |kP is. Conver-
sely, the state of the particle is retrieved from the b-rotor states via

Op | kP=
1

`2p
F

2p

0
dhOh | YbP e−inh, n=[p], b={p} (10)

where [p], {p} denote the integer and the fractional part of the momentum
p respectively. Using (10) and Poisson’s summation formula, one obtains
the wave function in the x-representation:

Ox | kP=
1

`2p
F dp e ipxOp | kP=F

1

0
db e ibxOx mod(2p)) | YbP. (11)

Fixing a sharp value of b yields a spatially extended state (a Bloch wave)
for the particle, even with a normalizable rotor wave function.

It follows from (5) and (9) (with g=0) that as |kP evolves into Û t |kP,
|YbP in turn evolves into Û t

b |YbP, where:

Ûb=(K̂R̂b), On| K̂ |mP=Kn − m, On| R̂b |mP=dnme−i y

2 (b+m)2
. (12)

Eq. (12) may also be written as follows:

Ûb=e−ik cos(ĥ)e−i y

2 (N̂+b)2
. (13)

where N̂=;n n |nPOn| is the angular momentum operator: N̂=−i d
dh in

the h-representation. At b=0, Eq. (13) is the standard Floquet operator
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of the Kicked Rotor. At b ] 0 one obtains a variant of the Kicked Rotor,
which has also been studied, b being typically given the physical meaning
of an external magnetic flux. (29)

We have thus shown that in the presence of conserved quasi-momen-
tum the particle dynamics can be determined as follows: given an initial
particle (pure) state |k(0)P one first computes the corresponding rotor
states |Yb(0)P as above described. These separately evolve into |Yb(t)P at
time t. The particle state |k(t)P is finally reconstructed using (10). The
process of decomposing the particle dynamics in a bundle of rotors will
henceforth be named ‘‘the Bloch–Wannier fibration.’’ It is the quantal
counterpart of the classical process of ‘‘folding back’’ the particle trajectory
onto a circle, by taking the x-coordinate mod(2p).

The kinetic energy of the particle at time t is:

E(t)=
1
2

F dp p2 |k(p, t)|2=
1
2

C
.

n=−.

F
1

0
db(n+b)2 |k(n+b, t)|2

=
1
2

F
1

0
db F

2p

0
dh 3 : d

dh
Oh | Yb(t)P :

2

+b2 |Oh | Yb(t)P|2

− 2ibOYb(t) | hP
d

dh
Oh | Yb(t)P4. (14)

In the case of unbounded propagation in momentum space, it is the 1st
term within the curly brackets which yields the dominant contribution at
large t (the 2nd is bounded by 1, the 3rd is order of square root of the 1st.).
Note that the 1st term is the average over b of the b-rotors kinetic energy.

2.3. Motion in the Temporal Gauge

In the case of nonzero gravity, quasi momentum is not conserved any
more because the kicking potential in (7) is not periodic (unless g is ratio-
nal). However, a quasi-momentum-conserving evolution is restored by the
substitution :

kg(p, t)=Op+tg| Û t |kP.

Since g is the momentum gained over one period due to gravity, this shift
amounts to measuring momentum relative to that of free-falling particles.
It is a gauge transformation and the resulting gauge will be termed the
‘‘temporal gauge’’ in what follows. (Recall that the positive x-direction is
that of gravitational acceleration).
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From (5) it follows that

kg(p, t+1)=C
n

Kne−i y

2 (p − n+tg+g

2)2
kg(p − n, t) (15)

that may be rewritten as :

|kg(t+1)P=Ûg(t) |kg(t)P, Ûg(t)=e−ik cos(X̂)e−i y

2 (P̂+tg+g

2)2
. (16)

The operator Ûg(t) describes up to a constant phase the evolution from
(continuous) time t=(ty)+ to time (t+y)+ under the time-dependent
Hamiltonian

Ĥg(t)=
1
2
1 P̂+

g

y
t2

2

+k cos(X̂) C
+.

t=−.

d(t− ty), (17)

that describes the motion in the temporal gauge. This Hamiltonian is
related to that in Eq. (2) by the gauge transformation e igX̂t/y. The classical
dynamics corresponding to (16) is given by the area-preserving, time-
dependent map in the (x, p) plane:

pt+1=pt+k sin(xt+1), xt+1=xt+y 1pt+tg+
g

2
2 . (18)

Letting ( Q 0 in Eq. (3) shows that, in our units, the classical limit is
approached as

k Q ., y Q 0, g Q ., ky Q const. ] 0, gy Q const. ] 0. (19)

The evolution (15) only mixes momenta which differ by integers: hence,
quasi-momentum is conserved, so the Bloch–Wannier fibration can be fully
implemented, as described in the previous section. Equation (12) now
becomes:

|Yb(t)P= D
t − 1

r=0
Ûb(r) |YbP, Ûb(r)=K̂R̂b(r) (20)

(all operator products ordered from right to left), where

On| K̂ |mP=Kn − m, On| R̂b(r) |mP=dnme−i y

2 (b+m+rg+g/2)2
. (21)

Consequently, in the temporal gauge,

Ûb(t)=e−ik cos(ĥ)e−i y

2 (N̂+b+gt+g/2)2
. (22)
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3. FEATURES OF QUANTUM DYNAMICS IN THE TEMPORAL

GAUGE

The theoretical importance of the Kicked Rotor model lies with its
asymptotic properties in time. Best known among these are dynamical
localization and quantum resonances. Though not crucial to current
experiments, the long-time asymptotics is an important theoretical question
for the present models, too. Apart from resonances, we do not attempt at a
thorough theoretical analysis of this issue, which is likely to critically
depend on the arythmetic type of y, g, b. Though some results in this
respect will be presented later, we mostly focus on intermediate-time fea-
tures of the quantum dynamics, directly connected to experimental findings
(the relevant time scale will become clear in the end of Section 3.2.4 and
from Fig. 6).

In this section the temporal gauge is constantly used, without any
further reference to the laboratory frame. The suffix g will be omitted in
order to simplify notations.

3.1. Resonances

3.1.1. Zero Gravity

If the kicking period y is commensurate to 4p, that is y=4pp/q with
p, q relatively prime integers, and in addition b=m/(2p) with m < 2p an
integer, then the b-Kicked Rotor exhibits the phenomenon of Quantum
Resonance. (13) In that case, indeed, the rotor dynamics commutes with
translations in momentum by multiples of q. This typically results in band
(absolutely continuous) quasi-energy spectrum and ballistic spread of the
rotor wave packet in the momentum representation. For special values of q
the bands may however be flat (i.e., of zero width). This is the case when
q=2; the ballistic spread is then only observed at b=1/2, while at b=0
the dynamics is sharply localized in momentum (‘‘anti-resonance’’), as can
be seen from (13), making use of the fact that e−ipln2

=e−ipln holds for
integer l and n. The width of the quasi-energy bands rapidly decreases as
the order q of the resonance increases. (13) Ballistic motion is then observed
only after quite long times. This places high-order resonances beyond
experimental observation. Our discussion is mostly focused on the main
resonances (q=1, 2).

Since the quadratic growth of energy at resonant values of y requires a
sharp value of quasi-momentum (hence an extended particle state in posi-
tion), it cannot be observed in the particle wave packet long-time dynamics,
not even at resonant values of y. Nevertheless, with a generic choice of the
initial wavepacket, a resonant effect is still manifest, in the form of linear

920 Fishman et al.



asymptotic growth of the particle energy. This is qualitatively understood
as follows. At time t, rotors whose quasi-momenta lie within ’ 1/t of the
resonant value(s) are still mimicking the resonant growth of energy 3 t2.
Assuming a smooth initial distribution of quasi-momenta, such rotors enter
the average over b (14) with a weight 3 1/t. This directly leads to the
linear growth of E(t). The latter can also be rigorously proven, and the
proportionality factor computed. This is done in the Appendix, under the
hypothesis that the initial wave function of the particle is such that
Ok| X̂2a |kP < . for some a > 1.

3.1.2. Nonzero Gravity

The b-rotor dynamics at resonant values of y in the presence of gravity
is a nontrivial mathematical problem, which may give rise to different
types of quantum transport depending on the arythmetic type of g.

In the Appendix we prove that for y=2lp, (l integer), and for all irra-
tional g in a set of full Lebesgue measure, the energy E(t) (relative to free
falling particles) grows like k2t/4, under the hypothesis that the initial wave
function satisfies Ok| X̂2a |kP < . for some a > 1.

3.2. Accelerator Modes

3.2.1. Quantum Rotor Dynamics near Resonance

We shall now analyze the quantum dynamics at values of y close to the
resonant values 2pl (l > 0 integer) and for large kicking strength k. We
hence assume y=2pl+E with l integer and |E| ° 1, and rescale k=k̃/|E|.
Replacing in (21) and noting e−ipln2

=e−ipln we get:

Om| R̂b(t) |nP=dmn e−i y

2 (b+tg+g/2)2
e−i(E

n2

2 +n(pl+yb+ytg+y
g

2))

whence it follows that (apart from an irrelevant phase factor)

Ûb(t)=e− i
|E| k̃ cos ĥe− i

|E| Ĥb(Î, t) (23)

where7

7 The integer time variable t is fixed on both sides, and the 2nd exponential on the right hand
side is that of a constant in time operator.

Î=|E| N̂=−i |E|
d

dh
, Ĥb(Î, t)=

1
2

sign(E) Î2+Î 1pl+y 1b+tg+
g

2
22.

(24)
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If |E| is assigned the role of Planck’s constant, then (23), (24) is the formal
quantization of either of the following classical (time-dependent) maps :

It+1=It+k̃ sin(ht+1), ht+1=ht ± It+pl+y(b+tg+g/2) mod(2p)
(25)

where ± has to be chosen according to the sign of E.8 The small |E| asymp-

8 The double sign would not appear if E were used as the ‘‘Planck constant,’’ rather than |E|.
In this way the sign of I would be reversed with respect to that of physical momentum
whenever E < 0.

totics of the quantum b-rotor is thus equivalent to a quasi-classical
approximation based on the ‘‘classical’’ dynamics (25). We emphasize that
‘‘classical’’ here is not related to the ( Q 0 limit but to the limit E Q 0
instead. The two limits are actually incompatible with each other except
possibly when l=0 (see (19)). For the sake of clarity the term ‘‘E-classical’’
will be used in the following.

3.2.2. e-Classical Rotor Dynamics

Changing variable to Jt=It ± pl ± y(b+gt+g/2) removes the explicit
time dependence of the maps (25), yielding:

Jt+1=Jt+k̃ sin(ht+1) ± yg, ht+1=ht ± Jt. (26)

These area-preserving maps are 2p-periodic in J and h, so they define
smooth, area-preserving maps of the 2-torus parametrized by J=J
mod(2p), J=h mod(2p). Such ‘‘toral maps’’ are conjugated to each other
under JQ 2p −J mod(2p), J Q J+p mod(2p). They differ from the
Standard Map by the constant drift gy.

Let J0, J0 be a period-p fixed point of either toral map. Iterating (26)
with J0=J0, h0=J0, at t=p one obtains:

Jp=J0+2pj, hp=h0+2pn (27)

for some integers j, n. The points (Jt, Jt) with 0 [ t [ p− 1 are period-p
fixed points themselves, and define a period-p periodic orbit of the toral
map, which is primitive if all such points are distinct. From (26), (27) it
immediately follows that

: yg

2p
+

j

p
: [ k̃

2p
(28)

that is a necessary condition for existence of a periodic orbit with given p, j.
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Period-1 fixed points are given on the 2-torus by J0=0, J0=hj, where

sin(hj)=
2pj + yg

k̃
(29)

and j is any integer such that:

− k̃ ± yg [ 2pj [ k̃ ± yg. (30)

No such point exists if k̃ < yg < p; two (at least) exist (that is, (29) is solv-
able for at least one value of the integer j) whenever k̃ \ p. Two period-1
fixed points with j=0 exist whenever k̃ \ yg. In order for the period-1 fixed
points (29) to be stable it is required that:

− 4 < ± k̃ cos(J0) < 0. (31)

From (30), (31) it follows that for any integer j each map (26) has
exactly one stable period-1 fixed point on the 2-torus, given by (29) if, and
only if,

k̃ (j, ± )
min < k̃ < k̃ (j, ± )

max , k̃ (j, ± )
min =|2pj + yg|, k̃ (j, ± )

max =`16+(2pj + yg)2 .
(32)

At k̃=k̃ j, ±
max such fixed points turn unstable and bifurcations occur. This is

shown in Fig. 1 for a case with j=0. At k̃=k̃0, −
max % 4.037 a stable period-2

Fig. 1. Phase portraits for the map (26) on the 2-torus, with y=5.86, g/y=0.01579, E=
−0.423. Here the torus is mapped onto [ − p, p) × [ − p, p). One stable fixed point with j=0
exists for 0.542 < k̃ < 4.037. Left: k̃=1.329, the stable fixed point is at Jg=0, hg=0.42.
Center: k̃=4.232, a stable period-2, j=0 orbit is visible. Right: k̃=4.494, the period-2 orbit
has left room to a stable period-6 orbit. The lower left part is magnified in the inset.
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Fig. 2. Same as Fig. 1, for g/y=0.01579, k̃=0.8p(4p − y), and different values of y. Left: at
y=10.996, one stable fixed point exists with period 1, j=0. On decreasing y it turns unstable
at y % 10.813, generating a period-2 stable orbit. At y % 10.801, one stable orbit with period 1,
j=−1 appears. Both orbits are shown in the phase portrait on the right, drawn at y=10.744.

orbit appears. This becomes in turn unstable at k̃ % 4.490, and a stable
period-6 orbit is left . The size of the islands rapidly decreases through the
sequence of bifurcations. At k̃=5 no significant stability islands are any
more visible; at k̃ % 5.741 and at k̃ % 6.825 stable period-1 points with
j=−1 and j=1 respectively appear. The rise and fall of these, and of sub-
sequent higher-j period-1 points as well, are ruled by (32). Further
examples of period-1 fixed points, and bifurcations thereof, are illustrated
in Fig. 2.

Examples of primary (that is, not born of period-1 points by bifurca-
tion) higher-period stable orbits are shown in Fig. 3. Generally speaking,
the presence of two independent parameters (k̃ and yg) in the maps produ-
ces a remarkable variety of stable periodic orbits of higher periods,
depending on the parameter values in complicated ways. Figures 1–3
provide but a partial view of such complexity. They were singled out
because they pertain to experimentally relevant parameter ranges; see
the discussion in Section 3.2.6. In particular, the value g/y=0.01579
constantly used in this paper is that of experiments in refs. 32–34.

3.2.3. e-Classical Accelerator Modes

Primitive periodic orbits of the toral maps yield families of accelerator
orbits of the original dynamics (25), marked by linear average growth of
momentum with time:

hpt=h0=J0 mod(2p), Itp=I0+apt, (33)
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Fig. 3. Phase portraits for the E-classical dynamics on the torus, showing a (5, −2) periodic
orbit at y=12.472, k̃=0.8p(4p − y), g=0.01579y (left) and a (10, 1) periodic orbit at
y=6.31, k̃=0.8p(y − 2p), g=0.01579y (right).

where

I0=J0 + pl + y 1b+
g

2
2+2pm, a=

2pj

p
+ yg, (34)

with m any integer, and J0, J0 a period-p fixed point. If such accelerator
orbits are stable, then they are surrounded by islands of positive measure in
phase space, also leading to ballistic (linear) average growth of momentum
in time. These are named accelerator modes.

We shall classify accelerator modes according to their order p and
jumping index j. By a (p, j)-accelerator mode we shall mean a mode, whose
order and jumping index are given by the integers p, j respectively.

3.2.4. Quantum Accelerator Modes in Rotor Dynamics

Initial physical momenta n0=|E|−1 I0 for E-classical accelerator modes
are obtained from (34) for any 0 [ b < 1 :

n0=
2pm+J0

|E|
−

pl
E

−
y

E
1b+

g

2
2 . (35)

If the stable islands associated with E-classical accelerator modes have a
large area compared to |E|, then they support a large number of quantum
states. Thus they may trap some of the rotor’s wave packet and give rise to
quantum accelerator modes traveling in physical momentum space with
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Fig. 4. Quantum phase space evolution of the b-rotor with b=0.218769, k̃=1.329,
y=5.86, g=0.093 initially prepared in the coherent state centered at the E-classical (1, 0)
accelerator mode n0=−3.754, h0=0.420. Contour plots of the Husimi functions of the rotor
are shown at times t=0, 2, 4, 8, 16. The black spots in the centers of the contours are an
ensemble of classical phase points, initially distributed in a square of area (=1 centered at the
mode. They evolve according to the E-classical dynamics (25).

speed ’ a/|E|=−yg/E+2pj/(p |E|). In order that such modes may be
observed, the phase space distribution associated with the initial rotor state
must significantly overlap the islands. Even in that case the modes will
eventually decay due to quantum tunneling out of the classical islands, as
explained in the end of this subsection.

This picture is confirmed by numerical simulations. Figure 4 shows the
quantum phase-space evolution of a b-rotor started in a coherent state
centered at the position of the (1, 0)-accelerator mode generated by the
fixed point shown in Fig. 1 (left). The Husimi functions computed at
subsequent times closely follow the motion of the E-classical mode.

In Fig. 5 we compare quantum and E-classical results after 30 kicks,
and different values of y at fixed k and g/y. In some of the examined y
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range, two different E-classical modes are simultaneously present, with dif-
ferent signs of the acceleration. In order to single out one of them, we have
plotted the quantities E± , which, in the classical case, are equal to the
average energy after 30 kicks, computed over those rotors in the ensemble
which, at the given time, have a positive (respectively, negative) momen-
tum. In the quantum case, they are equal to the energy, computed in the
state obtained by projecting the rotor state over the positive (respe., nega-
tive) momenta. The main peak in the left-hand plot is due to a (1, 0)
mode whose interval of existence and stability is, according to (32),
1.043 < y/(2p) < 1.261. Both the classical and the quantum data sharply
arise at the onset of the mode. The rise of the quantum data is actually
milder, because the E-classical island has to grow beyond a size ’ E in
order to be quantally significant (note that here |E| increases on increasing y).
As the stability border is approached, the island starts shrinking again, the
classical and the quantum modes become less and less effective (the latter
somewhat faster in most of the range) for the just mentioned reasons.

Fig. 5. Full dots: Quadratic spread E± (t) of the quantum b-rotor over positive (right) and
negative (left) momenta after 30 kicks, vs y, with g/y=0.01579, k=0.8p, b=lp/y − g/2,
l=1 (left) and l=2 (right). The rotor was started at n=0. Full lines: same for an ensemble of
5 × 106 classical rotors evolving according to (25), started with n=0 and h uniformly distrib-
uted in [0, 2p]. The exact meaning of E± (t) is explained in the text. At values of y/2p 4 1.72
the classical phase portraits are as shown in Fig. 2.
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At the stability border, a (2, 0) classical mode is originated by bifurcation,
which is in fact signalled by a tiny peak in the classical data; however, no
similar quantum structure is observed. The small peak on the leftmost part
is an accelerator mode itself, see Section 3.2.6.

At not really small values of the ‘‘Planck’s constant’’ E, strong
E-classical modes still leave quantal signatures. The quantum-classical cor-
respondence turns however loose, in interesting ways. This is illustrated in
the right hand part of Fig. 5. Now |E| decreases from left to right. The
rightmost peak corresponds to a (3, −1) mode (see Section 3.2.6), faithfully
reproduced by quantum data. The main classical peak is the (1, 0) mode,
active for 1.721 < y/(2p) < 1.862. A significant quantum mode is also
observed, with remarkable differences, however. In particular, the quantum
mode has its maximum near the point where the (1, 0) E-classical mode
turns unstable, giving birth to a (2, 0) mode, as demonstrated in Fig. 2
(right). We propose the following explanation of this curious behaviour.
When the stability island near a stable fixed point breaks at a bifurcation
point, some remnants of its KAM structure nevertheless survive, in the
form of broken tori (cantori). These provide but a partial barrier to classi-
cal motion, and allow for nonzero phase-area flux. If this flux is small
compared to E, then the cantorus quantally acts as if it were unbroken. (39–43)

Then it may give rise to a quantum accelerator mode, much more effecti-
vely than one might guess looking at the small area of stability of the
bifurcated higher-period orbits.

Though E-classical accelerator modes exist at any value of b, their
location in the b-rotor’s phase-space changes with b . Hence their impact
on the quantum evolution of a rotor state is enhanced at those values of b

which afford maximal overlap of the mode with the given state. In particu-
lar, if gy < 2p, and the b-rotor is initially set in the n=0 momentum
eigenstate, then the quantum (1, 0)-accelerator modes are especially pro-
nounced when b=lp/y − g/2. Note that b was not set to this value in the
case of of Fig. 4.

In general, in a semiclassical regime the tunneling probability through
a classically forbidden region is, up to a prefactor of order unity,
exp(− 2

(
ImS(q1, q2)), where S(q1, q2) is the (complex) action of a classical

complex trajectory moving from position q1 to q2 through the forbidden
region. (44) It is expected that in the E-semiclassical regime transitions
through forbidden regions in the E-classical phase space depend on the
‘‘Planck’s constant’’ |E| in the same way. Thus, in the E-semiclassical
regime, accelerator modes exponentially decay in time due to quantum
tunneling out of the E-classical islands, with a decay rate cE 3

exp − (const./|E|). The decay of quantum accelerator modes is numerically
demonstrated in Fig. 6.
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Fig. 6. Exponential decay of accelerator modes. Left: semilogarithmic plot of the probability
Pdn(t) in a moving momentum window of width dn=15 centered at the E-classical (1, 0) mode,
versus time t, for k=2.751, y=5.8, E=−0.483, g=0.092, b=p/y − g/2. The initial state is
a coherent state centered at the E-classical mode. The asymptotic decay of Pdn(t) is exponential
with decay rate cE % 0.32 × 10−4. The initial rapid decay is due to the fast spreading of those
parts of the initial wave packet that are not trapped in the E-classical accelerated island. Right:
semilogarithmic plot of cE vs 1/(|E|). The E-classical variables dI=|E| dn, k̃=|E| k were held
fixed at 7.540, 1.329 respectively while changing E. The fitting line corresponds to the law
cE % 135 × exp(−7.35/|E|).

3.2.5. Quantum Accelerator Modes in Particle Dynamics

Quantum Accelerator modes arise in the particle dynamics as well, just
because such dynamics comes of a quantal superposition of b-rotors. We
shall presently discuss the small-E asymptotics of the particle dynamics.
This will at once provide an alternative derivation of the E-classical rotor
dynamics, and a means of translating into particle dynamics the results
established in the previous sections.

Let us consider the propagator from state |pP to state |xŒP from
(discrete) time t to time t+1, for the particle dynamics (16). Let p=n+b

as usual, and xŒ=2mŒp+hŒ with mŒ integer and 0 [ hŒ < 2p. Then
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OxŒ| Û(t) |pP=
1

`2p
exp(if(b, hŒ, t))

× exp 1 − ik cos(hŒ)+inhŒ+2imŒpb −
i
2

En2 − inpl

− iny 1b+tg+
g

2
22 , (36)

where e ipln2
=e ipln was used, and

f(b, hŒ, t)=bhŒ −
y

2
1b+tg+

g

2
22

. (37)

Next we introduce E-classical scaled variables I=n |E|, k̃=k |E|, LŒ=
−2pmŒ |E|, to be kept constant in the E-classical limit. Then (36) rewrites as:

1

`2p
e if(b, hŒ, t) e

i
|E| F(hŒ, LŒ, b, I, t), (38)

where:

F(hŒ, LŒ, b, I, t)=IhŒ − LŒb − k̃ cos(hŒ) − 1
2 sign(E) I2

− I(pl+y(b+tg+g/2)) . (39)

Considering |E| as the Planck’s constant, and I, LŒ as canonical momenta
respectively conjugated to h, bŒ, the function F is a generating function for
the canonical transformation (h, I, b, L) Q (hŒ, IŒ, bŒ, LŒ) given by:

bŒ= −
“F

“LŒ
=b

L= −
“F

“b
=LŒ+yI

IŒ=
“F

“hŒ
=I+k̃ sin(hŒ)

h=
“F

“I
=hŒ − sign(E) I − pl − y(b+tg+g/2).

(40)

930 Fishman et al.



The second exponential in (38) is thus (apart from a constant prefactor) the
E-semiclassical propagator associated with the E-classical map (40). The 3d
and the 4th equation are just the E-classical b-rotor dynamics. The first
equation says that quasi-momentum is conserved, and the second yields the
complete revolutions accumulated by the b-rotor from time t to t+1; this
quantity is formally conjugated to quasi-momentum.

However, (38) has the additional phase factor e if, which is not
E-semiclassical, because f is not scaled by |E|−1. While this factor is irrele-
vant for the fixed b dynamics (and was in fact disregarded in Section 3.2.1),
it cannot be neglected when studying the particle wavepacket dynamics,
which requires integration over all values of b. Such integration causes
E-classical trajectories of different b-rotors to interfere. This interference is
ruled by the true Planck’s constant (=1, and cannot be suppressed by the
E Q 0 limit. Unlike the b-rotor dynamics, the particle dynamics does not
become ‘‘classical’’ in the E Q 0 limit.

As long as b is fixed, the maps (40) yield, in the physical variables p, x
and at |p|, |x| ± 1:

pt=|E|−1 It+b ’ p0+12pj

p
+ yg2 t

|E|
,

xt ’ − |E|−1Lt ’ x0+n0y t+12pj

p
+ yg2 yt(t − 1)

2|E|

(41)

for a (p, j)- accelerator mode (33) started at x0, p0.
Figure 7 shows the quantum evolution of a particle started at t=0 in

the coherent state centered at the (1, 0)-accelerator mode p0=0, x0=0.42.

Fig. 7. Quantum phase space evolution for a particle initially prepared in the coherent state
centered at p0=0, x0=0.42, with k=p, y=5.86 (E=−0.423), g=0.093. The computation
implements the Bloch–Wannier fibration discretized over 512 values of quasi-momentum.
Shades-of-grey plots of the Husimi function of the particle at times t=2, 8, 16 are shown.
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The phase-space distribution splits, the righmost part of it moving with
constant acceleration − yg/E. This is the effect of the accelerator mode.

A conceptually simpler situation is met when the initial state of the
particle is an incoherent mixture of plane waves, for in that case no inter-
ference occurs between different b-rotors. Let the initial particle state be
described by the statistical operator:

r̂(0)=F dp f(p) |pPOp|, f(p) \ 0, F dp f(p)=1. (42)

Each plane wave has a well-defined quasi-momentum, so it is equivalent
to a unique b-rotor in the angular momentum eigenstate specified by
the integer part of the momentum of the wave. Therefore, the statisti-
cal ensemble (42) is equivalent to a statistical ensemble of b-rotors. At
any given quasi-momentum b, the state of the rotor is described by
the statistical operator r̂b=(P(b))−1 ;n f(n+b) |nPOn|; the distribution of
quasi-momenta is further given by P(b)=;n f(n+b). The momentum
distribution for the particle is given at time t by

f(p, t)=P(b)On| r̂b(t) |nP (43)

where b={p}, n=[p], and r̂b(t) evolves according to the b-rotor dynam-
ics (20). The distribution in momentum is then E-quasi classically that of an
ensemble of classical rotors evolving according to (25).

3.2.6. Spectroscopy of Accelerator Modes

In the experiments described in refs. 32–34, the initial state of the
falling atoms is satisfactorily described, according to the same references,
by (42), with f(p) a Gaussian of rms deviation 4 2.55 (in our units)
centered at p=0. In Figs. 8 and 9 and we show numerical results obtained
with the same choice of the initial state. Such results provide further evi-
dence of accelerator modes, including higher order ones, which were not
previously identified. The figures were produced by computing the evolu-
tion of an ensemble of 50 rotors with the mentioned initial distribution
over 60 kicks, for different values of the period y near the main resonances
y=2p, y=4p, and k=0.8p. As g/y was kept fixed at the physical value
0.01579, g also varied with y. Figure 8 is analogous to the experimentally
obtained Fig. 2 in ref. 32 (with some differences in units and in parameter
values, though).
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Fig. 8. Momentum distribution in the temporal gauge after 60 kicks for different values of
the kicking period y near y=2p, and for k=0.8p, g=0.01579y. Note the negative sign of p.
Darker regions correspond to higher probability. The initial state is a mixture of 50 plane
waves sampled from a gaussian distribution of momenta. Full lines are the theoretical curves (44);
they are drawn piecewise, to avoid hiding the actual structures to which they correspond.
Their order and jumping index are indicated by the arrows. The inset shows data at t=400.

The final distribution of momenta is represented by shades of grey in
the (p, y) plane, darker zones corresponding to higher probability. The
hyperbolic-like structures near y=2p, 4p are signatures of quantum
accelerator modes. At any y where they are visible, they are in fact located
at the momentum values reached at t=60 by certain accelerator modes,

Fig. 9. Same as Fig. 8, for y near 4p. The inset shows data at time t=400.
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started at t=0 with n0 4 0. Such values are theoretically predicted by
Eqs. (33). The E-classical (p, j)-mode started at t=0 with I0=n0 |E| is
located at time t at the momentum:

n 4 n0 − t
yg

E
+t

2pj

p |E|
. (44)

Replacing E=y − 2pl (l=1, 2 for Fig. 8 and Fig. 9 respectively), and
g=0.01579y, one obtains a curve n=n(y) for any chosen time t and for
any chosen n0, p, j. Such curve is then observable, if a mode with the
chosen p, j exists, which significantly overlaps the initial distribution. The
narrow distribution of initial momenta legitimates the choice n0=0;
although other small values of n0 are involved, they just result in a thicken-
ing of the curves.

Well-marked (1, 0) modes are observed in both figures. The intervals
of existence and stability of the E-classical (1, 0) modes predicted by (32)
are 0.745 < y/(2p) < 0.963 and 1.043 < y/(2p) < 1.261 for the case of
Fig. 8. The (1, 0) mode in Fig. 9 is the same as in Fig. 5; in most of its
range the E-classical structure is like the one shown in Figs. 2 and 5. It has
both a (1, −1) stable orbit and a (2, 0) stable orbit originated by bifurca-
tion. The (1, −1) theoretical curve mostly lies at negative values of p off
the scale of the figure, and no significant trace of it was detected in our
quantum computation, indicating that the island was too tiny compared to
the relatively large values of |E|. We therefore propose to explain the large
(1, 0) structure observed by the same quantal mechanism discussed in
Section 3.2.4, namely localization by cantori.

Higher-order modes (10, ± 1) and (5, ± 2) are observed close to
y=2p and y=4p respectively. The corresponding E-classical modes are
shown in Fig. 3. The small, yet well marked, structure produced by the
(10, 1) mode near 2p is also visible in experimental data in ref. 32. The
correspondence of the (5, 2)- and (10, 1)-modes with the curves (44) is
remarkably evident at longer times, see the insets in Figs. 8 and 9.

In Figs. 8 and 9 other higher-order modes are visible, too. These were
identified by first fitting the observed structure with a curve (44), and then
checking that the E-classical phase space really displays, in the relevant y

range, a stable orbit with the found p, j. A few of these left but a dim trace
in Figs. 8 and 9. This may be due on one hand to mutual interference of
different modes when they coexist in the same y-range, and on the other
hand to the small number of rotors used in the computation. For such
reasons, Figs. 8 and 9 do not probably account for all the accelerator
modes which are excited in their respective parameter ranges. It should be
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noted that (28) must satisfied in order that a (p, j) mode may exist at given E;
hence, the ratio ± j/p must approximate gy/(2p) the better, the smaller E.
This explains why the order of the modes observed in Figs. 8 and 9 increa-
ses on approaching y=2p, y=4p.

Generally speaking, the family of higher-order modes that are poten-
tially observable in figures like 8 and 9 (and in experiments as well) is pro-
bably much richer than shown here. These might be exposed by varying
parameters, and also by a fine scan of smaller E ranges. The class of (p, j)
values wherein higher-order modes should be sought is restricted by
condition (28).

It looks likely that momentum distributions at relatively short times,
of the type shown in Figs. 8 and 9, can be altogether described by
accelerator mode spectroscopy, i.e, identification of accelerator modes and
analysis of their mutual interference. Such a systematic analysis is beyond
the scope of this work.

4. CONCLUDING REMARKS

(1) The above theory of accelerator modes hinges on reduction to
independent kicked rotors models, wherein such modes admit a natural
interpretation in terms of classical trajectories. It is the conservation of
quasi-momentum that allows for such reduction. Accelerator modes in
particle dynamics are a purely quantal effect, in fact a remarkable manifes-
tation of the conservation of quasi-momentum (in the temporal gauge).

(2) An interesting question for future theoretical and experimental
work is whether further accelerator modes may possibly arise in the vicinity
of higher-order kicked-rotor resonances. A theoretical approach to quantum
dynamics close to such resonances was proposed in ref. 45.

(3) The fact that the intermediate-time dynamics is dominated by a
discrete set of modes, which exponentially decay in time, bears a distinct
resemblance to the Wannier–Stark problem of a Bloch particle in a con-
stant field. (46) A Wannier–Stark scenario (distinct from the one we surmise
here) in optical potentials was recently realized. (47–49)

How far this analogy carries is, in our opinion, a very interesting
question.

(4) The time-dependent variants of the Kicked Rotor model
examined in this paper also raise other important theoretical questions,
which were not addressed in this paper. These are about the long-time
asymptotics of the dynamics, far beyond the scale determined by the life
time of the accelerator modes, 1/cE, and the localization-delocalization
issue in particular.
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(5) In the experiments (32–34) the initially prepared states form an
incoherent superposition of momentum eigenstates, and of quasimomentum
states of the form (42). Therefore the results of the calculations for the
b-rotors explain the experiments. The particle nature (compared to the
rotor) is important only for initial coherent superpositions of momentum
eigenstates, where the phases f of (37) and (38) are important, leading to
interference controlled by the factors e if as explained in Section 3.2.5.
It will of great interest if this point is explored experimentally.

APPENDIX A: RESONANCES IN THE PRESENCE OF GRAVITY

In this appendix we assume y=2pl, with l ] 0 integer. We denote
k(x)=Ox | kP the wave function of the particle in the position representa-
tion, and E(t) the kinetic energy at time t (where momentum is relative to
the one of free falling atoms).

Proposition. Let > dx |x|2a |k(x)|2 < +. for some a > 1. Then:

(I) If g=0 :

E(t)=E(0)+
k2Dt

4
+O(tl), l=max 32 − a,

1
2
4

where:

D=
1
l

C
l − 1

n=0
F

2p

0
dh |Oh | Ybn

P|2, bn=
n
l
+

l
2

mod(1). (45)

(II) If g ] 0 satisfies a Diophantine condition, that is, there are
constants c, c > 0 so that for all integer p, q :

:g −
p
q
: \ cq−2 − c (46)

then:

E(t)=E(0)+
k2t
4

+O(ts), s=max 32 − a+c,
1
2
4 . (47)

Remarks.

1. The quasi-momenta bn’s in part (I) are exactly those yielding
quadratic growth of the b-rotor energy.

2. Part (II) ensures that, for all g in a set of full measure, the energy
grows diffusively with coefficient k2/4.
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Proof. Numerical constants will share the common notation C
whenever their exact value is irrelevant. From (21),

On| R̂b(t) |Yb(t)P=e−ipln(1+2b+2tg+g)e if(b, g, t)On | Yb(t)P.

The explicit form of the phase f is not important for our present purposes.
Further,

Oh | Yb(t+1)P=Oh| K̂R̂b(t) |Yb(t)P=e if(b, g, t)e−ik cos(h)Oh − a − bt | Yb(t)P,

where:

a=pl(1+2b+g), b=2plg. (48)

It follows that:

Oh | Yb(t)P=e−if(b, g, t)e−ikF(h, b, t) 7h − at −
b
2

t(t − 1) | Yb(0)8

where:

F(h, b, t)= C
t − 1

r=0
cos(h − ra − rbt+r2b/2+rb/2).

We now use Eq. (14). As already remarked, the dominant contribution is
given by the 1st term on the rhs, corrections being on the order of square
root of that term. We hence restrict to that term. After substituting the
above equations, it takes the form:

1
2

F
1

0
db F

2p

0
dh : d

dh
Oh | Yb(t)P :

2

=E0(t)+E1(t)+E2(t), (49)

having denoted

E0(t)=
1
2

F
1

0
db F

2p

0
dh |gŒ(h, t)|2,

E1(t)=
k2

2
F

1

0
db F

2p

0
dh F −2(h, b, t) |g(h, t)|2,

E2(t)=kR F
1

0
db F

2p

0
dh iFŒ(h, b, t) gg(h, t) gŒ(h, t),

g(h, t)=Oh − ta − bt2/2+bt/2 | Yb(0)P.
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(primes denote differentiation with respect to h). An obvious shift in h

shows that

E0(t)=const=E0(0). (50)

Moreover, from the Cauchy–Schwarz inequality it follows that:

|E2(t)| [ k 1F
1

0
db F

2p

0
dh F −2(h, b, t) |g(h, t)|221/2 1F

1

0
db F

2p

0
dh |gŒ(h, t)|221/2

=2E1(t)1/2 E0(0)1/2 (51)

The dominant contribution to E(t) is thus given by E1(t), so E0, E2 will not
be considered until the end of the proof. After an obvious change of
variables,

E1(t)=
k2

2
F

1

0
db F

2p

0
dh 1 C

t

r=1
sin(h+ra+br2/2 − br/2)2

2

|Oh | Yb(0)P|2.
(52)

We rewrite the square of the sum as a double sum, then apply standard
trigonometric formulae, and finally replace a, b by (48), leading to :

E1(t)=
k2

2
F

1

0
db F

2p

0
dh |Oh | Yb(0)P|2 (A1(b, t) − A2(b, h, t)) (53)

with

A1(b, t)=
1
2

C
t

r, s=1
(−) (r+s) l cos(2plb(r − s)+plg(r2 − s2)),

A2(b, h, t)=
1
2

C
t

r, s=1
(−) (r+s) l cos(2h+2pb(r+s)+plg(r2+s2)).

Now we expand |Oh | Yb(0)P|2 in Fourier series:

|Oh | Yb(0)P|2= C
M, N

c(M, N) e2piMb e iNh. (54)

Replacing in (53) we obtain

E1(t)=1
2 pk2R(B1 − B2), (55)
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where:

B1= C
t

r, s=1
c(l(r − s), 0)(−) (r − s) l e−iplg(r2 − s2)

= C
t − 1

j=1 − t
c(lj, 0)(−) lj e iplgj2

C
min(t, j+t)

r=max(1, j+1)
e−2pilgrj, (56)

B2= C
t

r, s=1
c(l(r+s), 2)(−) l(r+s) e−iplg(r2+s2)

= C
2t

j=2
c(lj, 2)(−) lj e−iplgj2

C
min(t, j − 1)

r=max(1, j − t)
e−2pilgr(r − j). (57)

With the help of the lemma proven in the end of this section, B2 is bounded
by :

C
1+t

j=2
|c(lj, 2)| (j − 1)+ C

2t

j=t+2
|c(lj, 2)| (2t − j+1)

[ C C
2t

j=2
(j − 1) j−a+Ct C

2t

j=t+2
j−a=O(t2 − a).

Here and in the following O(tx) has to be read as O(log t), O(1) whenever
x=0, x < 0 respectively. In order to estimate B1 we distinguish two cases:

Case I. g=0.

B1= C
t − 1

j=1 − t
c(lj, 0)(−) lj (t − |j|)

=t C
.

j=−.

(−) lj c(lj, 0)+O(t2 − a)=
Dt
2p

+O(t2 − a) (58)

where

D=2p C
.

j=−.

(−) lj c(lj, 0)

=
2p

l
C
l − 1

n=0
C
.

jŒ=−.

c(jŒ, 0) epijŒ(2n/l+l)

=
1
l

C
l − 1

n=0
F

2p

0
dh |Oh | Ybn

P|2, bn=
n
l
+

l
2

mod (1). (59)
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We next substitute (58) and (59) in (55), and then in (49). Recalling (50),
(51), and the remark preceding (49) leads to (45).

Case II. g a Diophantine irrational. The sum (56) is written in the
form

B1=c(0, 0) t+S

where S is the contribution of all j ] 0 terms. It can be bounded as

|S| [ 2 C
t − 1

j=1
|c(jl, 0)|

2
|sin(plgj)|

[ C C
t − 1

j=1
|c(jl, 0)| j1+c=O(t2 − a+c). (60)

where (46) was used. The normalization of the wavefunction implies
c(0, 0)=1/(2p). Substituting in (55) leads to (47) after the same conclud-
ing steps as in Case I above. This completes the proof. L

Lemma. Under the hypotheses of the proposition, and with c(M, N)
defined as in (54), |c(M, N)|=O(|M|−a) as M Q ..

Proof. From the Bloch–Wannier fibration (8) it follows that, if
|M| \ 1, then:

|c(M, N)|=
1

2p
:F dx kg(x+Mp) k(x − Mp) e−iNx :

[ C |M|−a F dx |kg(x+Mp) k(x − Mp)| Q(x, M) (61)

where Q(x, M)=(1+(x+Mp)2)a/2 (1+(x − Mp)2)a/2 \ (4p2M2)a/2. The
Cauchy–Schwarz inequality then yields :

|c(M, N)| [ C|M|−a F dx |k(x)|2 (1+x2)a < .,

as the convergence of the integral was assumed in the proposition. L
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